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1. Unsteady Flow Equations (by Energy Approach) 

1.1 Momentum Equation 

Herein the derivation of the unsteady flow in Chow (1959) is given. For simplicity, the unsteady 

flow is treated like steady flow except that an additional variable for the time is used. This time 

variable takes into account the variation in flow velocity and brings to the acceleration, which 

produces force and causes additional energy loss.  

 

Consider a change in water surface elevation in the open-channel flow during the time interval 

tD  as seen in the figure below. The total head H at each cross section i is defined by 

2

2i
i

VH a y z
g

æ ö
= + +ç ÷
è ø

              (1)  

where a = energy correction factor, V = velocity averaged over the cross sectional area, y = flow 

depth, and z = bottom elevation from a certain datum. Then, the energy balance between two 

cross sections separated by dx, (1) and (2), can be written as 

1 2 HH H S dx W= + +               (2) 

where HS  = total head gradient and W = work done by arc. In order to account for the work 

done by arc, consider force F (per unit volume) such as  
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Figure 1. Unsteady flow in a prismatic open channel 
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which makes the force per unit weight to be 1 V
g t
¶
¶

. Therefore, the work done is 

1 VW F dx dx
g t
¶

= × =
¶

              (4) 

The total head at section (2) can be expanded by 

2 2

2 2 2
V V yH a a dx y dx z dz

g x g x
æ ö¶ ¶

= + + + + +ç ÷¶ ¶è ø
        (5) 

Substitution of Eqs.(4) and (5) into Eq.(2) and further simplification result in the following 

momentum equation such as 

0
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H
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g t g x x
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            (6) 
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where 0 /S z x= -¶ ¶  

 

(Q) Compare the derivation using the Reynolds transport theorem in Chow, Maidment, and Mays 

(1988). 

 

1.2 Continuity Equation 

The change in the amount of water during tD  is approximately 

yT dx t
t

¶æ ö Dç ÷¶è ø
                (7) 

and the spatial change due to the difference in discharge between two cross sections is 

Q dx t
x

¶æ ö Dç ÷¶è ø
                 (8) 

So the conservation of mass leads to 

0y QT dx t dx t
t x

¶ ¶æ ö æ öD + D =ç ÷ ç ÷¶ ¶è ø è ø
            (9) 

Since / / / /A t A y y t T y t¶ ¶ = ¶ ¶ ×¶ ¶ = ×¶ ¶ , we have 

0A Q
t x

¶ ¶
+ =

¶ ¶
                (10) 

which is valid for any arbitrary-shaped cross section. 
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(Q) Why the set of momentum and continuity equations are called as dynamic equations? 

 Force is involved in the derivation of the momentum equation. 

 

1.3 Summary of Dynamic Equations 

Such a differential equation of the form as 

( ) 0k F k
t x

¶ ¶
+ =

¶ ¶
 

is said to be in conservation form. A differential equation that can be written in conservation 

form is a conservation law, which states that the time rate of change of the total amount of a  

substance contained in some region is equal to the inward flux of that substance across the 

boundaries of that region. The dynamic equations derived in previous sections can be given in 

either conservative forms or non-conservative forms. This is summarized in the TABLE. 
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2. Simplification of Dynamic Equations 

There are number of ways in approximating the dynamic equation depending upon the 

importance of each term. That is, 

 

( )
2

0
1 1 cos 0f

Q Q y S S
gA t gA x A x

q
æ ö¶ ¶ ¶

+ + - - =ç ÷¶ ¶ ¶è ø
        (11) 

(1) kinematic wave 

(2) non-inertia 

(3) quasi-steady dynamic wave 

(4) full dynamic wave 
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An alternative form of the above equation using the primitive variable is 

0cos ( ) 0f
V V yV g g S S
t x x

q¶ ¶ ¶
+ + - - =

¶ ¶ ¶
          (12) 

 

(1) Kinematic Wave Model 

The greatest disadvantage of the kinematic wave approximation is that no backwater effect is 

considered. Because only one boundary condition at the upstream is necessary. Therefore, the 

sewer network cannot be analyzed by the kinematic wave approximation. 

 

(2) Non-inertia Model 

This is perhaps the most useful among the approximations because it offers a balance between 

accuracy and simplicity to a large number of field situations. Note that the diffusion coefficient 

in the non-inertia equation is not a constant but a function /h x¶ ¶ . While the diffusion 

coefficient in the kinematic wave equation is a constant. Since the dam break problem can be 

characterized by strong local acceleration term, non-inertia model does not work. The same is 

true for hydraulic jump or drop. 

 

(3) Quasi-steady Model 

This model requires two boundary conditions, so it does not provide any convenience in the 

numerical modeling. Also, in general, local and convective acceleration terms have same order of 

magnitude with opposite sign in the prismatic open channel. Therefore, it is always better (giving 
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accurate results) to ignore both terms instead of neglecting only one term. 

 

(4) Full Dynamic Wave Model 

For the free surface flow with Froude number greater than unity (about 1.3), the dynamic 

equation is not working well because of non-hydrostatic pressure distribution. 

For inland water (lake and reservoir), the convective acceleration is small. But in estuary, both 

local and convective acceleration terms are important. 

 

3. Kinematic Wave Approximation 

Kinematic wave vs. Dynamic wave 

The motion of an object can be described without considering mass and force, which should be 

taken account for in the dynamics. 

 

3.1 Kinematic Wave Equation 

The motion of wave is described principally by the continuity equation in the kinematic wave 

theory, where the accelerations and the pressure term are neglected. So the momentum equation 

becomes 

0 fS S=                   (13) 

With the help of Manning’s equation, the discharge can be given by 
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0 5/3
2/3

mC S
Q A

nP
=                (14) 

So the cross-sectional area is 

A aQb=                  (15) 

where 

3/5
2/3

0m

nPa
C S

æ ö
= ç ÷ç ÷
è ø

 

3 / 5b =  

Therefore, we have 

1 0Q Qa Q
x t

bb -¶ ¶
+ =

¶ ¶
              (16) 

If the lateral inflow q has to be considered, then Eq.(16) is rewritten as 

1Q Qa Q q
x t

bb -¶ ¶
+ =

¶ ¶
              (17) 

where q has a dimension of flow rate per length of channel. It is noted that the number of 

variable is reduced to one owing to the equation of momentum. Once the discharge is obtained 

by solving the first-order hyperbolic partial differential equation, Eq.(16), the stage or the cross 

sectional area is estimated by using Eq.(15).  

 

Henderson (1966) showed that Q is a better choice as the dependent variable rather than A. From 

Eq.(15),  
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ln ln lnA a Qb= +  

or 

1dQ dA
Q Ab

æ ö= ç ÷
è ø

 

Using either Manning’s or Weisbach’s formula, b is less than unity, which amplifies the error 

when Q is estimated from A. 

 

From Eq.(16), kinematic waves are seen to be resulted from both spatial and temporal changes in 

Q. The total differential of Q can be written as 

Q QdQ dx dt
x t

¶ ¶
= +
¶ ¶

               (18) 

Then 

Q Q dt dQ
x t dx dx

¶ ¶
+ =

¶ ¶
               (19) 

Comparing Eq.(19) with Eq.(17) leads to that both equations are identical if 

dQ q
dx

=                   (20) 

1

1dx
dt Qbab -=                 (21) 

Intuitively, Eq.(20) is true from the definition of the lateral discharge q. From Eq.(15),  

1

1dQ
dA Qbab -=                 (22) 
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Therefore, we have 

( )k
dx dQ c
dt dA

= º                 (23) 

where ck is the kinematic wave celerity. For a rectangular channel, the kinematic wave celerity is 

1
k

dQc
B dy

=                  (24) 

Lighthill and Whitham (1955) proved that the velocity of the main part of a natural flood wave 

approximates that of a kinematic wave. There may be several criteria for determining when the 

kinematic wave approximation is applicable, however, no universal or single criterion exists. 

 

Eq.(23) denotes the characteristics of Eq.(16), the first-order hyperbolic PDE. The equation has 

only one set of characteristics, along which the disturbance propagates in the downstream 

direction. The value of Q remains constant along the characteristics without being damped. 

Eq.(23) is also known as Kleitz –Seddon law and agrees well with observed speeds of flood 

waves in rivers. 

 

When Manning formula is used for Q in Eq.(22), 0.6b = is obtained. Thus a higher value of 

discharge means higher celerity. This explains how shock generates in the kinematic wave model. 

If the kinematic wave celerity is constant, then the equation becomes that of linear convection 

equation describing pure translation of waves without any deformation of wave forms. Therefore, 
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the significant role of the wave celerity which is a nonlinear function of discharge should be 

addressed in the kinematic wave model. 

 

(Q) Find the characteristic equations of the partial differential equation, Eq.(17). 

 

3.2 Solution of Kinematic Wave 

3.2.1 Analytical Solution of Kinematic Wave 

Kinematic wave can be analyzed by solving either hyperbolic PDE, Eq.(17), or its characteristic 

equations, Eqs.(20) and (23). Eq.(17) should be solved numerically because it is a nonlinear PDE 

in Q. However, the characteristic equations can be solved analytically when there is no lateral 

flow, i.e., 0q = . 

 

If the lateral flow is neglected, then from Eq.(20) 

0dQ
dx

=                   (25) 

which means that any particular discharge is conserved along the channel reach. That is, the 

kinematic wave is a wave of translation without attenuation. In other words, if the flow rate is 

known at a point in time and space, this flow value is propagating along the channel at the 

kinematic wave celerity. From Eq.(23), 
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00

x t

k
t

dx c dt=ò ò                 (26) 

or  

0( )kx c t t= -                 (27) 

because ck is not a function of time. Therefore, the time at which a discharge Q entering a 

channel of length L at time to will appear at the outlet is 

0 / kt t L c= +                 (28) 

This solution procedure is possible because the kinematic wave celerity is constant for a given Q, 

which is true when q = 0. Otherwise, Q and the celerity vary along the characteristic lines, which 

then become curved. 

 

3.2.2 Numerical Solution of Kinematic Wave 

(1) Linear Scheme 

If the backward difference method is used, then the finite difference form of the space and time 

derivatives of 1
1

j
iQ +
+  are, respectively, 

1 1
1

j j
i iQ QQ

x x

+ +
+ -¶

»
¶ D

               (29) 

1
1 1

j j
i iQ QQ

t t

+
+ +-¶

»
¶ D

               (30) 

If 1
1

j
iQ +
+  is used to evaluate Q in Eq.(17), then the resulting finite difference equation becomes 
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nonlinear in 1
1

j
iQ +
+ . So the following values for Q and q may be used to make the difference 

equation linear: 

( )1
1

1
2

j j
i iQ Q Q +
+» +                (31) 

( )1
1 1

1
2

j j
i iq q q+
+ +» +                (32) 

 

(2) Nonlinear Kinematic Wave Scheme 

The finite difference form of eq.(17) can be expressed by 

1 1 1 1
1 1 1 1 1

2

j j j j j j
i i i i i iQ Q A A q q

x t

+ + + +
+ + + + +- - -

+ =
D D

           (33) 

where  

( )1 1
1 1

j j
i iA Q

b
a+ +

+ +=                (34) 

( )1 1
j j

i iA Q
b

a+ +=                 (35) 

Handouts 

Choi, S.-U., and Garcia, M.H. (1993). “Kinematic wave approximation for debris flow routing.” 

Proceedings of XXV Congress of International Association of Hydraulic Research, Tokyo, Japan. 

Li, R.-M., Simons, D.B., and Stevens, M.A. (1975). “Nonlinear Kinematic Wave Approximation 

for Water Routing.” Water Resources Research, 11 (2), 245-252. 

Lighthill, M.J., and Whitham, G.B. (1955). “On kinematic waves, I. Flood movement in a long 

rivers.” Proceedings of Royal Society of London A, 229 (1178), 281-316. 

Ponce, V.M. (1991). “The kinematic wave controversy.” Journal of Hydraulic Engineering, 
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ASCE, 117(4), 511-525. 

 

4. Non-inertia Approximation 

The kinematic wave equation can also be shown to be a form of diffusion equation. So confusion 

has arisen between two approximations. For the sake of clarity, the approximation by dropping 

both inertia terms is called by “non-inertia” approximation. 

 

If both local and convective acceleration terms can be ignored, then the momentum equation 

becomes 

0 cosf
yS S
x

q ¶
- =

¶
               (36) 

The discharge can be given by Manning’s formula. That is, 

5/3

2/3
m

f
C AQ S
nP

=  

1/2

0

cos1n
yQ

S x
qæ ö¶

= -ç ÷¶è ø
             (37) 

where Qn is the discharge at the normal state defined by 

0 5/3
2/3

m
n

C S
Q A

nP
=                (38) 

After applying Eq.(37) to Eq.(10), the continuity equation for a rectangular channel is 

2

2
0

cos 0
2

n nQ Qy yB
t x S x

q¶¶ ¶
+ - =

¶ ¶ ¶
            (39) 
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in which 

n
k

Q yBc
x x

¶ ¶
=

¶ ¶
                (40) 

Thus, we have the following diffusion equation: 

2

2
0

cos 0
2

n
k

Qy y yc
t x BS x

q¶ ¶ ¶
+ - =

¶ ¶ ¶
            (41) 

The above equation is a convection diffusion equation with the convection velocity ck which is 

equal to the kinematic wave celerity and the diffusion coefficient such as 

0

cos
2

nQD
BS

q=                 (42) 

which is a non-linear function of flow depth y. 

 

5. Solution of Full-Dynamic Equations 

5.1 Method of Characteristics 

Let the continuity equation and the momentum equation be denoted by H1 and H2, respectively, 

such as 

1 0y V yH y V
t x x

¶ ¶ ¶
= + + =
¶ ¶ ¶

             (43) 

( )2 0 0f
V V yH V g g S S
t x x

¶ ¶ ¶
= + + - - =
¶ ¶ ¶

          (44) 

Using unknown multiplier l , H1 and H2 can be combined as 

1 2H H Hl= +                 (45) 
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or 

0( ) ( ) ( )f
V V y g yH V y V g S S
x t x t

l l
l

¶ ¶ ¶ ¶é ù é ù= + + + + + - -ê ú ê ú¶ ¶ ¶ ¶ë û ë û
     (46) 

dV dV dx V
dt dx dt t

¶
= +

¶
     if dx V y

dt
l= +       (47) 

dy y dx y
dt x dt t

¶ ¶
= +
¶ ¶

     if dx gV
dt l

= +        (48) 

Therefore, we have 

0( ) 0f
dV dyH g S S
dt dt

l= + - - =             (49) 

From Eqs.(47) and (48), the unknown multiplier can be obtained as 

/g yl = ±                 (50) 

For the positive value of l ,  

0/ ( ) 0fdV g ydy g S S dt+ - - =            (51) 

( )dx V gy dt= +                (52) 

and for the negative value ofl ,  

0/ ( ) 0fdV g ydy g S S dt- - - =            (53) 

( )dx V gy dt= -                (54) 

So far we have transformed the hyperbolic system of partial differential equations into a pair of 

ordinary differential equations, Eqs.(51)-(54). 
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Numerical analysis of the dynamic equations based upon the method of characteristics is known 

to yield the most accurate result. It is because of the fact that the method of characteristics 

involves the most important properties of the hyperbolic partial differential equations. So any 

numerical technique based upon the method of characteristics seeks numerical solution along the 

characteristic lines, along which information transmits. In general, finite difference method is 

used in implementing the method of characteristics. However, a weakness of this method lies in 

the extension of the numerical scheme into the multi-dimensional problem. 

Handouts 

Unsteady Flow in Open Channels by Mahmood and Yevjevich 

 

Dynamic Wave Celerity 

The wave celerity is the velocity with which the variation in flow travels along the channel. For 

the dynamic equations, the characteristic equations are  

d
dx V c
dt

= ±                  (55) 

and  

0( 2 ) ( )d f
d V c g S S
dt

± = -              (56) 

where cd is the dynamic wave celerity defined by 

dc gy=                  (57) 
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for a channel of rectangular cross section. For a channel of arbitrary cross section, cd is given by 

/dc gA B=                 (58) 

The celerity given by Eq.(57) or (58) measures the velocity of the dynamic wave with respect to 

still water. There are two dynamic waves: one is moving upstream and the other is moving 

downstream. In order for the wave to propagate up to the channel, cd should be greater than V, 

i.e., subcritical flow condition. 

 

Figure 2. Domain of Dependence and Domain of Influence 

 

Domain of Influence and Domain of Dependence 

In the subcritical flow, a disturbance introduced at some point propagates both in upstream and 

downstream directions. The region included between the two characteristics can possibly 

experience the influence of the disturbance. This region is called the domain of dependence. 

Domain of Dependence and Domain of Influence

forward characteristic
backward characteristic

Domain of dependence

Domain of influence

x

t

xo

to

C-C+
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Points outside of this region cannot be influenced by the disturbance. 

 

Conversely, a point 0, 0( )x t can be affected by disturbances from earlier times originating from 

the domain of influence. The propagation of disturbances from points outside of this region is not 

fast enough to reach xo before or at time to. Of course they will reach this point at some later 

time. 

 

(Q) Explain the properties of characteristics for the supercritical flow? 

Each point depends only on upstream disturbances and influences only downstream points. 

 

5.2 Implicit Dynamic Wave Model 

The method is perfectly described in Chow, Maidment , and Mays (1988). Many references are 

included therein. However, the first step is made by the authors of the following papers: 

 

Amein, M., and Fang, C.S. (1970). ‘‘Implicit flood routing in natural channels.” Journal of The 

Hydraulics Division, ASCE, 96(HY12), 2481-2500. 

Amein, M., and Chu, H.-L. (1975). ‘‘Implicit numerical modeling of unsteady flows.” Journal of 

The Hydraulics Division, ASCE, 101(HY6), 717-731. 
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